Salmonella - Host Interaction Network - A Detailed, Better Visualization

We’re almost done with the analyses and we’re making the final visualization of the network. As I previously posted, the network was clustered and visualized by time points. After that, we have done several more analyses and here I report how we visualized them. I’m going to post more about how we did the analyses separately.

Read more →


Network Clustering with NeAT - RNSC Algorithm

As we have obtained proteins at different times points from the experimental data, then we have found intermediate nodes (from human interactome) using PCSF algorithm and finally with a special matrix from the network that PCSF created, we have validated the edges and also determined edge directions using an approach which a divide and conquer (ILP) approach for construction of large-scale signaling networks from PPI data. The resulting network is a directed network and will be used and visualized for further analyses.

Read more →


Reconstructed Salmonella Signaling Network Visualized and Colored

After fold changes were obtained and HGNC names were found for each phosphopeptide, these were used to construct Salmonella signaling network using PCSF and then with the nodes that PCSF found as well, we generated a matrix which has node in the rows and time points in the columns and each cell shows the presence of corresponding protein under the corresponding time point(s).

Read more →


Python: defaultdict(list) Dictionary of Lists

Most of the time, when you need to work on large data, you’ll have to use some dictionaries in Python. Dictionaries of lists are very useful to store large data in very organized way. You can always initiate them by initiating empty lists inside an empty dictionary but when you don’t know how many of them you’ll end up with and if you want an easier option, use defaultdict(list). You just need to import it, first:

Read more →